Cambridge International AS \& A Level

CANDIDATE NAME

CENTRE

NUMBER

\square CANDIDATE NUMBER \square

CHEMISTRY

9701/35
Paper 3 Advanced Practical Skills 1
October/November 2021
2 hours

You must answer on the question paper.
You will need: The materials and apparatus listed in the confidential instructions

INSTRUCTIONS

- Answer all questions.
- Use a black or dark blue pen. You may use an HB pencil for any diagrams or graphs.
- Write your name, centre number and candidate number in the boxes at the top of the page.
- Write your answer to each question in the space provided.
- Do not use an erasable pen or correction fluid.
- Do not write on any bar codes.
- You may use a calculator.
- You should show all your working, use appropriate units and use an appropriate number of significant figures.
- Give details of the practical session and laboratory, where appropriate, in the boxes provided.

INFORMATION

- The total mark for this paper is 40 .
- The number of marks for each question or part question is shown in brackets [].

- The Periodic Table is printed in the question paper.
- Notes for use in qualitative analysis are provided in the question paper.

For Examiner's Use	
1	
2	
3	
Total	

This document has 12 pages. Any blank pages are indicated.

Quantitative analysis

Read through the whole method before starting any practical work. Where appropriate, prepare a table for your results in the space provided.

Show your working and appropriate significant figures in the final answer to each step of your calculations.

1 You will investigate a compound of a Group 1 element to determine which element is present. Group 1 carbonates decompose to give carbon dioxide when heated to high temperatures.

$$
\mathrm{X}_{2} \mathrm{CO}_{3}(\mathrm{~s}) \rightarrow \mathrm{X}_{2} \mathrm{O}(\mathrm{~s})+\mathrm{CO}_{2}(\mathrm{~g})
$$

FA 1 is the carbonate of the element, $\mathrm{X}_{2} \mathrm{CO}_{3}$.

(a) Method

- Weigh a crucible with its lid and record the mass.
- Add $1.40-1.60 \mathrm{~g}$ of FA 1 to the crucible.
- Weigh the crucible and its lid with FA 1 and record the mass.
- Place the crucible on the pipe-clay triangle. Heat the crucible, with its lid on, gently for approximately 1 minute. Then heat strongly for another minute.
- Carefully remove the lid. Heat the crucible strongly for 4 minutes.
- Replace the lid and leave the crucible and residue to cool for at least 5 minutes.

While the crucible is cooling you may wish to begin work on Question 2.

- Reweigh the crucible and contents with its lid. Record the mass.
- Remove the lid. Heat the crucible and contents strongly for a further 2 minutes.
- Replace the lid and leave the crucible and residue to cool for at least 5 minutes. Reweigh the crucible and residue with its lid. Record the mass.
- Calculate and record the mass of FA 1 added to the crucible. Calculate the mass of residue obtained.

Results

I	
II	
III	
IV	
V	

(b) Calculations

(i) Calculate the mass of carbon dioxide produced when the sample of $\mathrm{X}_{2} \mathrm{CO}_{3}$ was heated.

$$
\begin{equation*}
\text { mass of } \mathrm{CO}_{2} \text { produced }= \tag{1}
\end{equation*}
$$

(ii) Calculate the number of moles of $\mathbf{X}_{2} \mathrm{CO}_{3}$ needed to produce the mass of carbon dioxide calculated in (b)(i).

$$
\text { moles of } \mathbf{X}_{2} \mathrm{CO}_{3} \text { needed }=
$$

\qquad mol [1]
(iii) Use your answer to (b)(ii) and the information on page 2 to calculate the relative formula mass, M_{r}, of $\mathrm{X}_{2} \mathrm{CO}_{3}$.

$$
\begin{equation*}
M_{\mathrm{r}} \text { of } \mathrm{X}_{2} \mathrm{CO}_{3}= \tag{1}
\end{equation*}
$$

(iv) Use your answer to (b)(iii) to calculate the relative atomic mass, A_{r}, of \mathbf{X}. Hence identify \mathbf{X}. Explain how you reached your conclusion.
X is \qquad . .
\qquad
\qquad
(c) In this experiment you heated the sample of $\mathrm{X}_{2} \mathrm{CO}_{3}$ for approximately 8 minutes.

Explain, using evidence from your results in (a), whether your sample of $X_{2} \mathrm{CO}_{3}$ had decomposed completely.
\qquad
\qquad

2 In this experiment you will titrate a solution of the hydroxide of a Group 1 element, \mathbf{Z}, with sulfuric acid. The equation for the reaction is shown.
\mathbf{Z} may or may not be the same as \mathbf{X}.

$$
2 \mathrm{ZOH}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{aq}) \rightarrow \mathrm{Z}_{2} \mathrm{SO}_{4}(\mathrm{aq})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})
$$

FA 2 is $26.3 \mathrm{~g} \mathrm{dm}^{-3}$ aqueous hydroxide of metal $\mathbf{Z}, \mathbf{Z O H}$.
FA 3 is 0.0500 mol dm $^{-3}$ sulfuric acid, $\mathrm{H}_{2} \mathrm{SO}_{4}$. bromophenol blue indicator
(a) Method

- Pipette $25.0 \mathrm{~cm}^{3}$ of FA 2 into the $250 \mathrm{~cm}^{3}$ volumetric flask.
- Add distilled water to the flask to make $250 \mathrm{~cm}^{3}$ of solution. Shake the flask thoroughly to ensure complete mixing. Label this solution FA 4.
- Rinse the pipette with a little distilled water and then a little FA 4.
- Fill the burette with FA 3.
- Pipette $25.0 \mathrm{~cm}^{3}$ of FA 4 into a conical flask.
- Add a few drops of bromophenol blue indicator.
- Carry out a rough titration and record your burette readings in the space below.

The rough titre is cm^{3}.

- Carry out as many accurate titrations as you think necessary to obtain consistent results.
- Make sure your recorded results show the accuracy of your practical work.
- Record in a suitable form in the space below all of your burette readings and the volume of FA 3 added in each accurate titration.

I	
II	
III	
IV	
V	
VI	
VII	

[7]
(b) From your accurate titration results, calculate a suitable mean value to use in your calculations. Show clearly how you obtained this value.

(c) Calculations

(i) Give your answers to (c)(ii), (c)(iii) and (c)(iv) to the appropriate number of significant figures.
(ii) Calculate the number of moles of sulfuric acid present in the volume of FA 3 you calculated in (b).

$$
\text { moles of } \mathrm{H}_{2} \mathrm{SO}_{4}=
$$

\qquad mol [1]
(iii) Use your answer to (c)(ii) and the information on page 4 to calculate the concentration, in moldm ${ }^{-3}$, of $\mathbf{Z O H}$ present in FA 4.
concentration of FA $4=$ \qquad moldm^{-3}
(iv) Calculate the concentration, in moldm^{-3}, of ZOH in FA 2.
concentration of FA $2=$ \qquad moldm ${ }^{-3}$
(v) Use your answer to (c)(iv) and the information on page 4 to calculate the relative atomic mass, A_{r}, of \mathbf{Z}. Hence identify \mathbf{Z}.
Show your working.
Z is
(d) Using the value for the relative atomic mass of \mathbf{Z} that you calculated in (c)(v), calculate the percentage difference of your value from that shown in the Periodic Table.
(If you did not obtain a value for the A_{r} of \mathbf{Z}, assume it is 32.0 . Note, this is not the correct value.)

Qualitative analysis

Where reagents are selected for use in a test, the name or correct formula of the element or compound must be given.

At each stage of any test you are to record details of the following:

- colour changes seen
- the formation of any precipitate and its solubility in an excess of the reagent added
- the formation of any gas and its identification by a suitable test.

You should indicate clearly at what stage in a test a change occurs.
If any solution is warmed, a boiling tube must be used.
Rinse and reuse test-tubes and boiling tubes where possible.

No additional tests for ions present should be attempted.

3 Half-fill the $250 \mathrm{~cm}^{3}$ beaker with water and place it on a tripod and gauze above a heatproof mat. Heat the water until boiling and then turn off the Bunsen burner. You will use this as a hot water-bath in 3(b)(i).
(a) FA 5, FA 6 and FA 7 are solutions. Each solution contains one cation and one anion. Carbonate, $\mathrm{CO}_{3}{ }^{2-}$, is not present in any of the solutions.
(i) Carry out the following tests and record your observations. Use a 1 cm depth of solution in a test-tube for each test.

test	observations		
	FA 5		FA 6
Test 1 Add an equal depth of dilute sulfuric acid.			FA 7
Test 2 Add an equal depth of aqueous sodium carbonate.			
Test 3 Add an equal depth of aqueous magnesium chloride.			

(ii) Use your observations in (a)(i) to suggest a possible formula for each of the following:

The cation in FA 5 is \qquad .. .

The cation in FA 6 is \qquad . .

The anion in FA 7 is \qquad .
(iii) Apart from using an indicator, suggest a further test that would confirm the identity of the anion in FA 7.

Carry out this test and record the result.
\qquad
\qquad
\qquad
(iv) Did the result of your test in (a)(iii) confirm the identity of the anion in FA 7? Explain your answer.
\qquad
\qquad
\qquad
(b) FA 8 is an aqueous solution.
(i) Carry out the following tests and record your observations.

test	observations
Test 1	
To a 1 cm depth of FA 8 in a	
test-tube, add a few drops of acidified	
potassium manganate(VII). Place the	
tube in the hot water-bath.	

(ii) For each observation, state what you can conclude about the chemical properties of FA 8.

Test 1 \qquad
Test 2 \qquad

BLANK PAGE

Qualitative Analysis Notes

1 Reactions of aqueous cations

ion	reaction with	
	$\mathrm{NaOH}(\mathrm{aq})$	$\mathrm{NH}_{3}(\mathrm{aq})$
aluminium, $\mathrm{Al} \mathrm{l}^{3+}(\mathrm{aq})$	white ppt. soluble in excess	white ppt. insoluble in excess
ammonium, $\mathrm{NH}_{4}^{+}(\mathrm{aq})$	no ppt. ammonia produced on heating	-
barium, $\mathrm{Ba}^{2+}(\mathrm{aq})$	faint white ppt. is nearly always observed unless reagents are pure	no ppt.
calcium, $\mathrm{Ca}^{2+}(\mathrm{aq})$	white ppt. with high [$\mathrm{Ca}^{2+}(\mathrm{aq})$]	no ppt.
$\begin{aligned} & \text { chromium(III), } \\ & \mathrm{Cr}^{3^{3+}(\mathrm{aq})} \end{aligned}$	grey-green ppt. soluble in excess	grey-green ppt. insoluble in excess
$\begin{aligned} & \text { copper(II), } \\ & \mathrm{Cu}^{2+}(\mathrm{aq}) \end{aligned}$	pale blue ppt. insoluble in excess	pale blue ppt. soluble in excess giving dark blue solution
iron(II), $\mathrm{Fe}^{2+}(\mathrm{aq})$	green ppt. turning brown on contact with air insoluble in excess	green ppt. turning brown on contact with air insoluble in excess
iron(III), $\mathrm{Fe}^{3+}(\mathrm{aq})$	red-brown ppt. insoluble in excess	red-brown ppt. insoluble in excess
magnesium, $\mathrm{Mg}^{2+}(\mathrm{aq})$	white ppt. insoluble in excess	white ppt. insoluble in excess
$\begin{aligned} & \text { manganese(II), } \\ & \mathrm{Mn}^{2+}(\mathrm{aq}) \end{aligned}$	off-white ppt. rapidly turning brown on contact with air insoluble in excess	off-white ppt. rapidly turning brown on contact with air insoluble in excess
zinc, $\mathrm{Zn}^{2+}(\mathrm{aq})$	white ppt. soluble in excess	white ppt. soluble in excess

2 Reactions of anions

ion	reaction
carbonate, CO_{3}^{2-}	CO_{2} liberated by dilute acids
chloride, $\mathrm{Cl}^{-}(\mathrm{aq})$	gives white ppt. with $\mathrm{Ag}^{+}(\mathrm{aq})$ (soluble in $\mathrm{NH}_{3}(\mathrm{aq})$)
bromide, $\mathrm{Br}^{-}(\mathrm{aq})$	gives cream ppt. with $\mathrm{Ag}^{+}(\mathrm{aq})$ (partially soluble in $\mathrm{NH}_{3}(\mathrm{aq})$)
iodide, $I^{-(a q)}$	gives yellow ppt. with $\mathrm{Ag}^{+}(\mathrm{aq})$ (insoluble in $\mathrm{NH}_{3}(\mathrm{aq})$)
nitrate, $\mathrm{NO}_{3}^{-}(\mathrm{aq})$	NH_{3} liberated on heating with $\mathrm{OH}^{-}(\mathrm{aq})$ and Al foil
nitrite, $\mathrm{NO}_{2}^{-}(\mathrm{aq})$	NH_{3} liberated on heating with $\mathrm{OH}^{-}(\mathrm{aq})$ and Al foil
sulfate, $\mathrm{SO}_{4}{ }^{2-}(\mathrm{aq})$	gives white ppt. with $\mathrm{Ba}^{2+}(\mathrm{aq})$ (insoluble in excess dilute strong acids)
sulfite, $\mathrm{SO}_{3}^{2-}(\mathrm{aq})$	gives white ppt. with $\mathrm{Ba}^{2+}(\mathrm{aq})$ (soluble in excess dilute strong acids)

3 Tests for gases

gas	test and test result
ammonia, NH_{3}	turns damp red litmus paper blue
carbon dioxide, CO_{2}	gives a white ppt. with limewater (ppt. dissolves with excess CO_{2})
chlorine, Cl_{2}	bleaches damp litmus paper
hydrogen, H_{2}	'pops' with a lighted splint
oxygen, O_{2}	relights a glowing splint

	İ
	® ${ }^{\text {¢ }}$
	の玄意
	\＆¢ ¢ ¢
	\square
	まる
	\％${ }^{2}$
－号堷寺	๙ ว
	－「

To avoid the issue of disclosure of answer－related information to candidates，all copyright acknowledgements are reproduced online in the Cambridge Assessment International Education Copyright Acknowledgements Booklet．This is produced for each series of examinations and is freely available to download at www．cambridgeinternational．org after the live examination series．

